Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Microelec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Microelectronics and Electronic Packaging
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions

Reliability Assessment and Failure Analysis of G-Helix, a Free-Standing Compliant Off-Chip Interconnect

Authors: Suresh K. Sitaraman; K. Kacker;

Reliability Assessment and Failure Analysis of G-Helix, a Free-Standing Compliant Off-Chip Interconnect

Abstract

Continued miniaturization in the microelectronics industry calls for chip-to-substrate off-chip interconnects that have 100 μm pitch or less for area-array format. Such fine-pitch interconnects will have a shorter standoff height and a smaller cross-section area, and thus could fail through thermo-mechanical fatigue prematurely. Also, as the industry transitions to porous low-K dielectric/Cu interconnect structures, it is important to ensure that the stresses induced by the off-chip interconnects and the package configuration do not crack or delaminate the low-K dielectric material. Compliant free-standing structures used as off-chip interconnects are a potential solution to address these reliability concerns. In our previous work we have proposed G-Helix interconnects, a lithography-based electroplated compliant off-chip interconnect that can be fabricated at the wafer level. In this paper we develop an assembly process for G-Helix interconnects at a 100 μm pitch, identifying the critical factors that impact the assembly yield of such free-standing compliant interconnect. Reliability data are presented for a 20 mm × 20 mm chip with G-Helix interconnects at a 100 μm pitch assembled on an organic substrate and subjected to accelerated thermal cycling. Subsequent failure analysis of the assembly is performed and limited correlation is shown with failure location predicted by finite elements models.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold