Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2014 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2014
versions View all 2 versions

Endothelin-1 Regulates H+-ATPase-Dependent Transepithelial H+ Secretion in Zebrafish

Authors: Ying-Jey, Guh; Yung-Che, Tseng; Chao-Yew, Yang; Pung-Pung, Hwang;

Endothelin-1 Regulates H+-ATPase-Dependent Transepithelial H+ Secretion in Zebrafish

Abstract

Endothelin-1 (EDN1) is an important regulator of H+ secretion in the mammalian kidney. EDN1 enhances renal tubule H+-ATPase activity, but the underlying mechanism remains unclear. To further elucidate the role of EDN1 in vertebrates' acid-base regulation, the present study used zebrafish as the model to examine the effects of EDN1 and its receptors on transepithelial H+ secretion. Expression of EDN1 and one of its receptors, EDNRAa, was stimulated in zebrafish acclimated to acidic water. A noninvasive scanning ion-selective electrode technique was used to show that edn1 overexpression enhances H+ secretion in embryonic skin at 3 days post fertilization. EDNRAa loss of function significantly decreased EDN1- and acid-induced H+ secretion. Abrogation of EDN1-enhanced H+ secretion by a vacuolar H+-ATPase inhibitor (bafilomycin A1) suggests that EDN1 exerts its action by regulating the H+-ATPase-mediated H+ secretion. EDN1 does not appear to affect H+ secretion through either altering the abundance of H+-ATPase or affecting the cell differentiation of H+-ATPase-rich ionocytes, because the reduction in secretion upon ednraa knockdown was not accompanied by decreased expression of H+-ATPase or reduced H+-ATPase-rich cell density. These findings provide evidence that EDN1 signaling is involved in acid-base regulation in zebrafish and enhance our understanding of EDN1 regulation of transepithelial H+ secretion in vertebrates.

Keywords

Acid-Base Equilibrium, Male, Vacuolar Proton-Translocating ATPases, Sodium-Hydrogen Exchangers, Endothelin-1, Endothelin A Receptor Antagonists, Sodium-Hydrogen Exchanger 3, Biological Transport, Active, Gene Expression Regulation, Developmental, Hydrogen-Ion Concentration, Receptor, Endothelin A, Morpholinos, Protein Subunits, Membrane Transport Modulators, Animals, Female, Macrolides, Enzyme Inhibitors, Signal Transduction, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze