Downloads provided by UsageCountsArchitecture of Human Translation Initiation Factor 3
Architecture of Human Translation Initiation Factor 3
Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human eIF3 subunits, including an octameric core. The structure of eIF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that eIF3 subunits a and c interact with initiation factors eIF1 and eIF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the eIF3 octameric core. These results highlight the conserved architecture of eIF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans.
- QB3 United States
- Lawrence Berkeley National Laboratory United States
- University of California, Berkeley United States
- Howard Hughes Medical Institute United States
Biopolymers, Structural Biology, Protein Conformation, Cryoelectron Microscopy, Codon, Initiator, Humans, Prokaryotic Initiation Factor-3, Molecular Biology
Biopolymers, Structural Biology, Protein Conformation, Cryoelectron Microscopy, Codon, Initiator, Humans, Prokaryotic Initiation Factor-3, Molecular Biology
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 37 download downloads 10 - 37views10downloads
Views provided by UsageCounts
Downloads provided by UsageCounts
