Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Interaction of the ubiquitin carboxyl terminal esterase L1 with α2-adrenergic receptors inhibits agonist-mediated p44/42 MAP kinase activation

Authors: Bernd, Weber; Christian, Schaper; Yi, Wang; Jens, Scholz; Berthold, Bein;

Interaction of the ubiquitin carboxyl terminal esterase L1 with α2-adrenergic receptors inhibits agonist-mediated p44/42 MAP kinase activation

Abstract

Neuroprotective effects of alpha(2)-adrenergic receptor (AR) agonists are mediated via the alpha(2A)AR subtype, but the molecular mechanisms underlying these actions are still not elucidated. A two-hybrid screen was performed to identify new proteins that may control alpha(2)AR receptor function and trafficking. This screen identified the ubiquitin carboxyl-terminal hydrolase-L1 (Uch-L1), a protein associated with Parkinson's disease, as alpha(2)AR interacting protein. This interaction was confirmed and evaluated by GST pull down assays demonstrating that Uch-L1 binds preferentially to the alpha(2A)AR subtype and only with less affinity to alpha(2B)AR and alpha(2C)AR. Co-immunoprecipitation of epitope-tagged proteins confirmed the specificity of this interaction in vivo. Moreover, co-transfection of a truncated G-protein coupled receptor kinase-DNA preventing alpha(2)AR phosphorylation led to an increased signal-strength of coimmunoprecipitated Uch-L1. Confocal laser microscopy showed that interaction of alpha(2A)AR and Uch-L1 occurred in the cytoplasm. alpha(2)AR agonist mediated activation of p44/42 MAP Kinase was drastically decreased in the presence of Uch-L1 indicating a functional relevance of this interaction. These findings may present a mechanism contributing to subtype-specific alpha(2)AR trafficking and a potential pathway for the neuroprotective effects of alpha(2)AR agonists.

Keywords

Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Recombinant Fusion Proteins, Molecular Sequence Data, Cell Line, Receptors, Adrenergic, alpha-2, Two-Hybrid System Techniques, Humans, Immunoprecipitation, Amino Acid Sequence, Phosphorylation, Ubiquitin Thiolesterase, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%