Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2017
versions View all 2 versions

The mitogen‐activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1

Authors: Doryaneh, Ahmadpour; Ewa, Maciaszczyk-Dziubinska; Roja, Babazadeh; Sita, Dahal; Magdalena, Migocka; Mikael, Andersson; Robert, Wysocki; +2 Authors

The mitogen‐activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1

Abstract

Arsenite is widely present in nature; therefore, cells have evolved mechanisms to prevent arsenite influx and promote efflux. In yeast (Saccharomyces cerevisiae), the aquaglyceroporin Fps1 mediates arsenite influx and efflux. The mitogen‐activated protein kinase (MAPK) Hog1 has previously been shown to restrict arsenite influx through Fps1. In this study, we show that another MAPK, Slt2, is transiently phosphorylated in response to arsenite influx. Our findings indicate that the protein kinase activity of Slt2 is required for its role in arsenite tolerance. While Hog1 prevents arsenite influx via phosphorylation of T231 at the N‐terminal domain of Fps1, Slt2 promotes arsenite efflux through phosphorylation of S537 at the C terminus. Our data suggest that Slt2 physically interacts with Fps1 and that this interaction depends on phosphorylation of S537. We hypothesize that Hog1 and Slt2 may affect each other's binding to Fps1, thereby controlling the opening and closing of the channel.

Keywords

Binding Sites, Saccharomyces cerevisiae Proteins, Arsenites, Membrane Proteins, Saccharomyces cerevisiae, Serine, Tyrosine, Mitogen-Activated Protein Kinases, Phosphorylation, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze