Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 1993 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A higher control center of locomotor behavior in the Drosophila brain

Authors: M Heisenberg; R Strauss;

A higher control center of locomotor behavior in the Drosophila brain

Abstract

In order to elucidate the behavioral significance of the central complex (CC), we have examined walking in 15 Drosophila mutant strains belonging to eight independent X-linked genes that affect the structure of the CC. Compared to four different wild-type strains, all are impaired either in a general or in a paradigm-dependent manner. Behavioral deficits concern walking activity, walking speed, or “straightness of walking” as measured in an object fixation task, in fast phototaxis, and in negative geotaxis. Behavioral deficits of three strains with mutations in different genes were studied in detail using mosaic analysis and high-speed cinematography. In all cases the focus for declining walking activity is located in the brain and is fully correlated with the respective defect of the CC. A high correlation between the degree of the behavioral impairment and the severity of the structural defect in two strains further adds to the evidence. Declining walking activity is not an unspecific side effect of structural brain defects, as steady walking is observed in structural mutants of the visual system and mushroom bodies. In mutant flies no- bridgeKS49 (nob), step size as a function of the stepping period is reduced. The focus of the resulting reduced average and maximum walking speeds resides in the brain and, again, the behavioral impairment fully correlates with the structural defects of the CC. While no indication is found for a role of the CC in setting up the basic stepping rhythm in straight walking (a respective phenotype in mutant central- complexKS181 flies resides in the ventral ganglion), a role in turning and start/stop maneuvers is suggested by aberrations in the stepping pattern of nob flies during such episodes.

Keywords

Behavior, Animal, Light, Mosaicism, Mutation, Animals, Brain, Drosophila, Extremities, Motor Activity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    413
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
413
Top 1%
Top 1%
Top 10%
hybrid