Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2013 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2013
versions View all 2 versions

Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520

Authors: Yun-Yong, Park; Sang-Bae, Kim; Hee Dong, Han; Bo Hwa, Sohn; Ji Hoon, Kim; Jiyong, Liang; Yiling, Lu; +5 Authors

Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520

Abstract

Abstract Metabolic changes are common features of many cancer cells and are frequently associated with the clinical outcome of patients with various cancers, including hepatocellular carcinoma (HCC). Thus, aberrant metabolic pathways in cancer cells are attractive targets for cancer therapy. However, our understanding of cancer-specific regulatory mechanisms of cell metabolism is still very limited. We found that Tat-activating regulatory DNA-binding protein (TARDBP) is a novel regulator of glycolysis in HCC cells. TARDBP regulates expression of the platelet isoform of phosphofructokinase (PFKP), the rate-limiting enzyme of glycolysis that catalyzes the irreversible conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. Silencing of TARDBP expression in multiple HCC cell lines leads to impaired glucose metabolism and inhibition of in vitro and in vivo growth of HCC cells. Notably, the microRNA 520 (miR-520) family is an intermediate regulator of TARDBP-mediated regulation of glycolysis. Mechanistically, TARDBP suppressed expression of the miR-520 family, which, in turn, inhibited expression of PFKP. We further showed that expression of TARDBP is significantly associated with the overall survival of patients with HCC. Conclusion: Our study provides new mechanistic insights into the regulation of glycolysis in HCC cells and reveals TARDBP as a potential therapeutic target for HCC. (HEPATOLOGY 2013;)

Keywords

Blood Platelets, Carcinoma, Hepatocellular, Liver Neoplasms, Phosphofructokinase-1, Type C, DNA-Binding Proteins, Mice, MicroRNAs, Cell Line, Tumor, Animals, Humans, Female, Glycolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
bronze