Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2003
versions View all 4 versions

The ARF-like GTPases Arl1p and Arl3p Act in a Pathway that Interacts with Vesicle-Tethering Factors at the Golgi Apparatus

Authors: Panic, Bojana; Whyte, James R.C.; Munro, Sean;

The ARF-like GTPases Arl1p and Arl3p Act in a Pathway that Interacts with Vesicle-Tethering Factors at the Golgi Apparatus

Abstract

The ARLs are a diverse family of GTPases that are related to ADP-ribosylation factors (ARFs), but whose function is poorly understood. There are at least ten ARLs in humans, two of which have homologs in the yeast Saccharomyces cerevisiae (ARL1/Arl1p and ARFRP1/Arl3p). The function of ARFRP1 is unknown, but mammalian ARL1 has recently been found to interact with a number of effectors including the GRIP domain that is present in a family of Golgi-localized long coiled-coil proteins. We find that in yeast, the intracellular targeting of Imh1p, the only yeast GRIP domain protein, is dependent on both Arl1p and Arl3p, but not on the ARF proteins. A recombinant form of the Imh1p GRIP domain binds to Arl1p in a GTP-dependent manner, but not to Arl3p. Yeast also contain a relative of SCOCO, a protein proposed to bind human ARL1, but this yeast protein, Slo1p, appears to bind Arl3p rather than Arl1p in vitro. However, Imh1p is not the sole effector of Arl1p since affinity chromatography of cytosol with immobilized Arl1p:GTP revealed an interaction with the GARP/VFT complex that is thought to act in the tethering of vesicles to the Golgi apparatus. Finally, we find that Arl3p is required in vivo for the targeting of Arl1p, explaining its requirement for the normal distribution of Imh1p.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), ADP-Ribosylation Factors, Cytoplasmic Vesicles, Molecular Sequence Data, Golgi Apparatus, Membrane Proteins, Saccharomyces cerevisiae, GTP Phosphohydrolases, Multigene Family, Animals, Humans, Amino Acid Sequence, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 10%
Top 10%
Top 1%
hybrid