Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Fibril Formation of hsp10 Homologue Proteins and Determination of Fibril Core Regions: Differences in Fibril Core Regions Dependent on Subtle Differences in Amino Acid Sequence

Authors: Hisashi, Yagi; Ai, Sato; Akihiro, Yoshida; Yoshiki, Hattori; Masahiro, Hara; Jun, Shimamura; Isao, Sakane; +3 Authors

Fibril Formation of hsp10 Homologue Proteins and Determination of Fibril Core Regions: Differences in Fibril Core Regions Dependent on Subtle Differences in Amino Acid Sequence

Abstract

Heat shock protein 10 (hsp10) is a member of the molecular chaperones and works with hsp60 in mediating various protein folding reactions. GroES is a representative protein of hsp10 from Escherichia coli. Recently, we found that GroES formed a typical amyloid fibril from a guanidine hydrochloride (Gdn-HCl) unfolded state at neutral pH. Here, we report that other hsp10 homologues, such as human hsp10 (Hhsp10), rat mitochondrial hsp10 (Rhsp10), Gp31 from T4 phage, and hsp10 from the hyperthermophilic bacteria Thermotoga maritima, also form amyloid fibrils from an unfolded state. Interestingly, whereas GroES formed fibrils from either the Gdn-HCl unfolded state (at neutral pH) or the acidic unfolded state (at pH 2.0-3.0), Hhsp10, Rhsp10, and Gp31 formed fibrils from only the acidic unfolded state. Core peptide regions of these protein fibrils were determined by proteolysis treatment followed by a combination of Edman degradation and mass spectroscopy analyses of the protease-resistant peptides. The core peptides of GroES fibrils were identical for fibrils formed from the Gdn-HCl unfolded state and those formed from the acidic unfolded state. However, a peptide with a different sequence was isolated from fibrils of Hhsp10 and Rhsp10. With the use of synthesized peptides of the determined core regions, it was also confirmed that the identified regions were capable of fibril formation. These findings suggested that GroES homologues formed typical amyloid fibrils under acidic unfolding conditions but that the fibril core structures were different, perhaps owing to differences in local amino acid sequences.

Related Organizations
Keywords

Amyloid, Protein Folding, Sequence Homology, Amino Acid, Molecular Sequence Data, Hydrogen-Ion Concentration, Microscopy, Atomic Force, Rats, Viral Proteins, Microscopy, Electron, Transmission, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Chaperonin 10, Animals, Humans, Amino Acid Sequence, Chromatography, High Pressure Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%