Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The Gene for Biotin Synthase from Saccharomyces cerevisiae: Cloning, Sequencing, and Complementation of Escherichia coli Strains Lacking Biotin Synthase

Authors: S, Zhang; I, Sanyal; G H, Bulboaca; A, Rich; D H, Flint;

The Gene for Biotin Synthase from Saccharomyces cerevisiae: Cloning, Sequencing, and Complementation of Escherichia coli Strains Lacking Biotin Synthase

Abstract

Biotin synthase catalyzes the insertion of a sulfur atom between two carbon atoms of dethiobiotin to form biotin in the last step of the biotin biosynthesis pathway. In Escherichia coli, biotin synthase is coded for by bioB gene. We report here cloning, sequencing, and initial functional characterization of the yeast gene for biotin synthase in Saccharomyces cerevisiae. We have named this gene BIO2. It consists of a 355-codon open reading frame near the ZUO1 gene. Analysis of the yeast protein encoded by the BIO2 gene reveals that it shares extensive homology with biotin synthases of E. coli and Bacillus sphaericus. The yeast and the two bacterial biotin synthase proteins have similar molecular weights, amino acid compositions, and hydropathies. The plasmid pUCBIO2 containing the yeast BIO2 gene completely complements E. coli bioB- and delta bio mutants and enables these mutants to grow on dethiobiotin. Although BIO2 is physically linked to ZUO1, which encodes the putative left-handed Z-DNA binding protein zuotin, it appears to be regulated independently from it. The yeast BIO2 and ZUO1 genes reside near ADE3 gene on chromosome VII. BIO2 is the first eukaryotic gene reported from the biotin biosynthetic pathway.

Related Organizations
Keywords

Base Sequence, Molecular Sequence Data, Gene Transfer Techniques, Biotin, Sequence Homology, Bacillus, Saccharomyces cerevisiae, Molecular Weight, Open Reading Frames, Sulfurtransferases, Escherichia coli, Amino Acid Sequence, Cloning, Molecular, Codon, Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%