Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2001
versions View all 2 versions

A point mutation in PTPRC is associated with the development of multiple sclerosis

Authors: M, Jacobsen; D, Schweer; A, Ziegler; R, Gaber; S, Schock; R, Schwinzer; K, Wonigeit; +9 Authors

A point mutation in PTPRC is associated with the development of multiple sclerosis

Abstract

Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is widely accepted that a dysregulated immune response against brain resident antigens is central to its yet unknown pathogenesis. Although there is evidence that the development of MS has a genetic component, specific genetic factors are largely unknown. Here we investigated the role of a point mutation in the gene (PTPRC) encoding protein-tyrosine phosphatase, receptor-type C (also known as CD45) in the heterozygous state in the development of MS. The nucleotide transition in exon 4 of the gene locus interferes with mRNA splicing and results in altered expression of CD45 isoforms on immune cells. In three of four independent case-control studies, we demonstrated an association of the mutation with MS. We found the PTPRC mutation to be linked to and associated with the disease in three MS nuclear families. In one additional family, we found the same variant CD45 phenotype, with an as-yet-unknown origin, among the members affected with MS. Our findings suggest an association of the mutation in PTPRC with the development of MS in some families.

Related Organizations
Keywords

Male, Heterozygote, Multiple Sclerosis, Base Sequence, Genetic Variation, DNA, Exons, Pedigree, Phenotype, Case-Control Studies, Humans, Leukocyte Common Antigens, Point Mutation, Female, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    180
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
180
Top 10%
Top 1%
Top 1%