Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/bs.enz...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Trans-editing by aminoacyl-tRNA synthetase-like editing domains

Authors: Alexandra B, Kuzmishin Nagy; Marina, Bakhtina; Karin, Musier-Forsyth;

Trans-editing by aminoacyl-tRNA synthetase-like editing domains

Abstract

Aminoacyl-tRNA synthetases (aaRS) are ubiquitous enzymes responsible for aminoacyl-tRNA (aa-tRNA) synthesis. Correctly formed aa-tRNAs are necessary for proper decoding of mRNA and accurate protein synthesis. tRNAs possess specific nucleobases that promote selective recognition by cognate aaRSs. Selecting the cognate amino acid can be more challenging because all amino acids share the same peptide backbone and several are isosteric or have similar side chains. Thus, aaRSs can misactivate non-cognate amino acids and produce mischarged aa-tRNAs. If left uncorrected, mischarged aa-tRNAs deliver their non-cognate amino acid to the ribosome resulting in misincorporation into the nascent polypeptide chain. This changes the primary protein sequence and potentially causes misfolding or formation of non-functional proteins that impair cell survival. A variety of proofreading or editing pathways exist to prevent and correct mistakes in aa-tRNA formation. Editing may occur before the amino acid transfer step of aminoacylation via hydrolysis of the aminoacyl-adenylate. Alternatively, post-transfer editing, which occurs after the mischarged aa-tRNA is formed, may be carried out via a distinct editing site on the aaRS where the mischarged aa-tRNA is deacylated. In recent years, it has become clear that most organisms also encode factors that lack aminoacylation activity but resemble aaRS editing domains and function to clear mischarged aa-tRNAs in trans. This review focuses on these trans-editing factors, which are encoded in all three domains of life and function together with editing domains present within aaRSs to ensure that the accuracy of protein synthesis is sufficient for cell survival.

Related Organizations
Keywords

Amino Acyl-tRNA Synthetases, RNA, Transfer, Amino Acid Sequence, Amino Acids, RNA, Transfer, Amino Acyl

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%