Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Biochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Process Biochemistry
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions

Genome-wide expression analyses of adaptive response against medadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377

Authors: Ilsup Kim; Haesun Yun; Hitoshi Iwahashi; Ingnyol Jin;

Genome-wide expression analyses of adaptive response against medadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377

Abstract

Abstract Menadione (MD), a simplest synthetic quinone used with reactive oxygen species (ROSs) generating agents, causes damages to Saccharomyces cerevisiae KNU5377. To understand antioxidant defense mechanisms under adaptive stress response, we have performed biochemical analyses and the genome-wide gene expression analysis after exposure to 120 μM of MD with and without adaptation. KNU5377 could survive at higher concentration of MD, 680 μM for 1 h, comparing with S. cerevisiae W303, ATCC24858 as reference strains. Glutathione peroxidase (GPX2), thioredoxin peroxidase 2 (TSA2), and thioredoxin reductase (TRR1) were up-regulated over 10-fold after treatment of 120 μM. Superoxide dismutase (SOD1), catalase (CTA1), glucose-6-phosphate dehydrogenase (ZWF1), glutathione peroxidase (GPX2, HYR1), glutathione reductase (GLR1), thioredoxin peroxidase (AHP1), and thioredoxin 2 (TRX2) were also strongly induced after adaptation. Additionally, transcriptional analysis of those genes was well corresponded with up-regulated protein expression and enzyme activity. Antioxidant defense mechanisms containing SOD1, ZWF and TRX2 maybe orchestrate by the different levels at the same time and function to produce effective defense systems. These results suggest that specific mechanisms including the three proteins were well organized for acquiring adaptive response to MD in this strain.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Average