Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 1987 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

In vitro assay of squalene epoxidase of Saccharomyces cerevisiae

Authors: B, M'Baya; F, Karst;

In vitro assay of squalene epoxidase of Saccharomyces cerevisiae

Abstract

We describe a simple assay for measuring squalene epoxidase specific activity in Saccharomyces cerevisiae cell-free extracts, by using [14C] farnesyl pyrophosphate as substrate. Cofactor requirements for activity are FAD and NADPH or NADH, NADPH being the preferred reduced pyridine nucleotide. Squalene epoxidase activity is localized in microsomal fraction and no supernatant soluble factor is required for maximum activity. Microsomal fraction converted farnesyl pyrophosphate into squalene, squalene 2,3-epoxide and lanosterol, showing that squalene 2,3-epoxide-lanosterol cyclase is also a microsome-bound enzyme. We show also that squalene epoxidase activity is not inhibited by ergosterol or lanosterol, but that enzyme synthesis is induced by oxygen.

Related Organizations
Keywords

Saccharomyces cerevisiae, Oxygen, Kinetics, Lanosterol, Farnesyl-Diphosphate Farnesyltransferase, Polyisoprenyl Phosphates, Squalene Monooxygenase, Ergosterol, Microsomes, Flavin-Adenine Dinucleotide, Oxygenases, Cycloheximide, Sesquiterpenes, NADP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average