Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
Circulation
Article . 2005 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2005
versions View all 2 versions

Functional Ephrin-B2 Expression for Promotive Interaction Between Arterial and Venous Vessels in Postnatal Neovascularization

Authors: Douglas W. Losordo; Jeffrey M. Isner; Takayuki Asahara; Shin Ichiro Hayashi; Haruchika Masuda;

Functional Ephrin-B2 Expression for Promotive Interaction Between Arterial and Venous Vessels in Postnatal Neovascularization

Abstract

Background— Ephrin-B2, one of the transmembrane ligands, is a genetic marker of arterial endothelial cells (ECs) at embryonic stages and is essential for cardiovascular development, but its roles in ischemic cardiovascular disease are not well understood. In this study, we focused on the function of ephrin-B2 in postnatal neovascularization. Methods and Results— We found that ephrin-B2 is exclusively expressed and significantly upregulated in the arterial vasculature after the initial angiogenic responses in tissue ischemia. Upregulation of ephrin-B2 is also observed in EC cordlike formation in vitro. Interestingly, ephrin-B2 expression on ECs was enhanced by promotive angiogenic growth factors, such as vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor, whereas it was attenuated by angiopoietin-1, a factor for blood vessel maturation. Moreover, an ephrin-B2–rich environment was shown to induce neovascularization mainly through venous angiogenesis in an in vivo cornea micropocket assay. Conclusions— Our study indicates that the ephrin-B2 ligand is likely to have functional expression on angiogenic arterial ECs and induce a subsequent promotive effect on venous vessels during postnatal neovascularization.

Related Organizations
Keywords

Neovascularization, Physiologic, Ephrin-B2, Mice, Transgenic, Arteries, Limbus Corneae, Hindlimb, Up-Regulation, Veins, Disease Models, Animal, Mice, Ischemia, Animals, Humans, Endothelium, Vascular, Growth Substances, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
bronze