Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

Cache-oblivious shortest paths in graphs using buffer heap

Authors: Rezaul Alam Chowdhury; Vijaya Ramachandran;

Cache-oblivious shortest paths in graphs using buffer heap

Abstract

We present the Buffer Heap (BH), a cache-oblivious priority queue that supports Delete-Min, Delete, and Decrease-Key operations in O(1overB log2NoverB) amortized block transfers from external memory, where B is the (unknown) block-size and N is the maximum number of elements in the queue. As is common in cache-oblivious algorithms, we assume a 'tall cache' (i.e., M = Ω(B1 + e), where M is the size of the main memory). We also assume the Decrease-Key operation only verifies that the element does not exist in the priority queue with a smaller key value, hence it also supports the insert operation in the same amortized bound. The amortized time bound for each operation is O(log N). We also present a Cache-Oblivious Tournament Tree (COTT), which is simpler than the Buffer Heap, but has weaker bounds.Using the Buffer Heap we present cache-oblivious algorithms for undirected and directed single-source shortest path (SSSP) problems for graphs with non-negative edge-weights. On a graph with V vertices and E edges, our algorithm for the undirected case performs O(V + EoverB log2VoverB) block transfers and for the directed case performs O((V + EoverB) . log2VoverB) block transfers. The running time of both algorithms is O((V + E). log V).For both priority queues with Decrease-Key operation, and for shortest path problems on general graphs, our results appear to give the first non-trivial cache-oblivious bounds.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average