Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Paleoceanography and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2018
License: CC BY NC SA
Data sources: HAL-INSU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Paleoceanography and Paleoclimatology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Benthic Biotic Response to Climate Changes Over the Last 700,000 Years in a Deep Marginal Sea: Impacts of Deoxygenation and the Mid‐Brunhes Event

Authors: Huai‐Hsuan M. Huang; Moriaki Yasuhara; Hokuto Iwatani; Carlos A. Alvarez Zarikian; Maria‐Angela Bassetti; Takuya Sagawa;

Benthic Biotic Response to Climate Changes Over the Last 700,000 Years in a Deep Marginal Sea: Impacts of Deoxygenation and the Mid‐Brunhes Event

Abstract

AbstractThe Sea of Japan is a marginal sea, connecting to adjacent seas by four shallow straits (water depths <130 m). Marginal seas are ideal for studying biotic responses to large‐scale environmental changes as they often are sensitive to glacial‐interglacial and stadial‐interstadial climatic cycles. However, only a limited number of studies cover time periods beyond the last two glacial‐interglacial cycles. Here we present a 700,000‐year record of benthic biotic response to paleoceanographic changes in the southern Sea of Japan, covering the past seven glacial‐interglacial cycles, based on ostracode assemblages at the Integrated Ocean Drilling Program (IODP) Site U1427. The results indicate that long‐term oxygen variability in the bottom water has been the major control impacting the marginal‐sea biota. Five local extirpation events were recognized as barren zones during glacial maxima immediately before terminations I, II, IV, V, and VII, which are probably caused by bottom‐water deoxygenation. Results of multivariate analyses indicated clear faunal cyclicity influenced by glacial‐interglacial oxygen variability with a succession from opportunistic species dominance through tolerant infauna dominance to barren zone during the deoxygenation processes and the opposite succession during the recovery processes. The Sea of Japan ostracode faunal composition showed distinct difference between the post‐MBE and pre‐MBE (Mid‐Brunhes Event) periods, indicating the MBE as a major disturbance event in marginal‐sea ecosystems. The MBE shortened the duration of the extirpation events, fostered dominance of warmer‐water species, and amplified the glacial‐interglacial faunal cyclicity. Our long‐term biotic response study clearly indicates that deep marginal sea ecosystems are dynamic and vulnerable to climate changes.

Country
France
Keywords

[SDU] Sciences of the Universe [physics], Mid‐Brunhes Event, Ostracoda, the Sea of Japan, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, East Sea, [SDU.STU.OC] Sciences of the Universe [physics]/Earth Sciences/Oceanography, benthic extirpation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
bronze