Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Biochemica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Biochemical Sciences
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Phosphoinositide signaling and the regulation of membrane trafficking in yeast

Authors: G, Odorizzi; M, Babst; S D, Emr;

Phosphoinositide signaling and the regulation of membrane trafficking in yeast

Abstract

Phosphoinositides are key regulators of diverse cellular processes in eukaryotic cells. Genetic studies in yeast have advanced our understanding of how phosphoinositide-signaling pathways regulate membrane trafficking. Enzymes required for the synthesis (kinases) and turnover (phosphatases) of distinct phosphoinositides have been identified and several downstream effector molecules linked to phosphoinositide signaling have recently been characterized.

Keywords

Phosphatidylinositol 3-Kinases, Sequence Homology, Amino Acid, Cell Membrane, Molecular Sequence Data, Humans, Biological Transport, Amino Acid Sequence, Saccharomyces cerevisiae, Phosphatidylinositols, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    278
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
278
Top 10%
Top 1%
Top 1%