Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2007
versions View all 2 versions

Toward simpler and faster genome-wide mutagenesis in mice

Authors: Qiang Wu; Guoxin Ying; Sen Wu; Mario R. Capecchi; Mario R. Capecchi;

Toward simpler and faster genome-wide mutagenesis in mice

Abstract

Here we describe a practical Cre-loxP and piggyBac transposon-based mutagenesis strategy to systematically mutate coding sequences and/or the vast noncoding regions of the mouse genome for large-scale functional genomic analysis. To illustrate this approach, we first created loxP-containing loss-of-function alleles in the protocadherin alpha, beta and gamma gene clusters (Pcdha, Pcdhb and Pcdhg). Using these alleles, we show that, under proper guidance, Cre-loxP site-specific recombination can mediate efficient trans-allelic recombination in vivo, facilitating the generation of large germline deletions and duplications including deletions of Pcdha, and Pcdha to Pcdhb, simply by breeding (that is, at frequencies of 5.5%-21.6%). The same breeding method can also generate designed germline translocations between nonhomologous chromosomes at unexpected frequencies of greater than 1%. By incorporating a piggyBac transposon to insert and to distribute loxP sites randomly throughout the mouse genome, we present a simple but comprehensive method for generating genome-wide deletions and duplications, in addition to insertional loss-of-function and conditional rescue alleles, again simply by breeding.

Related Organizations
Keywords

Male, Mice, Knockout, Recombination, Genetic, Genome, Molecular Sequence Data, Cadherins, Translocation, Genetic, Mice, Inbred C57BL, Mice, Mutagenesis, Animals, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 1%