Stress-specific Activation Mechanisms for the “Cell Integrity” MAPK Pathway
pmid: 14610085
Stress-specific Activation Mechanisms for the “Cell Integrity” MAPK Pathway
Many environmental stresses trigger cellular responses by activating mitogen-activated protein kinase (MAPK) pathways. Once activated, these highly conserved protein kinase cascades can elicit cellular responses such as transcriptional activation of response genes, cytoskeletal rearrangement, and cell cycle arrest. The mechanism of pathway activation by environmental stresses is in most cases unknown. We have analyzed the activation of the budding yeast "cell integrity" MAPK pathway by heat shock, hypoosmotic shock, and actin perturbation, and we report that different stresses regulate this pathway at different steps. In no case can MAPK activation be explained by the prevailing view that stresses simply induce GTP loading of the Rho1p GTPase at the "top" of the pathway. Instead, our findings suggest that the stresses can modulate at least three distinct kinases acting between Rho1p and the MAPK. These findings suggest that stresses provide "lateral" inputs into this regulatory pathway, rather than operating in a linear "top-down" manner.
- Duke University Hospital United States
- Duke Medical Center United States
- Duke University United States
- Duke University Health System United States
Fungal Proteins, rho GTP-Binding Proteins, Hot Temperature, Saccharomyces cerevisiae Proteins, MAP Kinase Signaling System, Osmotic Pressure, Saccharomyces cerevisiae, Stress, Mechanical
Fungal Proteins, rho GTP-Binding Proteins, Hot Temperature, Saccharomyces cerevisiae Proteins, MAP Kinase Signaling System, Osmotic Pressure, Saccharomyces cerevisiae, Stress, Mechanical
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).83 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
