Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Medicine
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Insulin-like growth factor binding proteins-2 and -4 enhance the migration of human CD34−/CD133+ hematopoietic stem and progenitor cells

Authors: Andreas Simm; Babett Bartling; Alexander Navarrete Santos; Rolf-Edgar Silber; RJ Scheubel; Alexander Koch;

Insulin-like growth factor binding proteins-2 and -4 enhance the migration of human CD34−/CD133+ hematopoietic stem and progenitor cells

Abstract

The insulin-like growth factor (IGF) system is involved in cell migration, which plays an important role in cancer progression. It has been shown that cancer progression correlates with the level of circulating human hematopoietic stem and progenitor cells (HSPCs) expressing CD34 and/or CD133. However, it is unknown whether factors released from cancer cells, including soluble compounds of the IGF system, recruit these HSPCs via enhancing their migration. Our study showed the expression of type I IGF receptor (IGF-IR) in human HSPCs expressing CD34 and/or CD133. In an indirect co-culture model, soluble factors released from human lung epithelial cancer cells (H358, H322) increased the migration of CD34-/CD133+ cells towards cancer cells, whereas migration of CD34+/CD133+ or CD34+/CD133- cells remained unchanged. The lung epithelial cancer cell lines H358 and H322, exhibited a high expression of IGFBP-2, -4 and -6 but not IGF-I and IGFBP-3. Subsequent analyses with those soluble compounds of the IGF system revealed a dose-dependent stimulating effect of the IGFBP-2 and -4 on the migration of CD34-/CD133+ cells. In contrast, IGF-I and IGFBP-3 and -6 did not influence the migration of CD34-/CD133+ cells. Because IGFBPs are involved in cell migration via IGF-dependent and -independent mechanisms, our study indicates that IGFBP-2 and -4, which are expressed in lung epithelial cancer cells, enhance the migration of CD34-/CD133+ HSPCs independent of IGF-I.

Related Organizations
Keywords

Lung Neoplasms, Stem Cells, Gene Expression, Antigens, CD34, Epithelial Cells, Hematopoietic Stem Cells, Gene Expression Regulation, Neoplastic, Insulin-Like Growth Factor Binding Protein 2, Insulin-Like Growth Factor Binding Protein 4, Antigens, CD, Cell Movement, Cell Line, Tumor, Humans, AC133 Antigen, Peptides, Cells, Cultured, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
bronze