Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Brain Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Brain Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Multiple transcripts generated by the DCAMKL gene are expressed in the rat hippocampus

Authors: E, Vreugdenhil; B, Engels; R, Middelburg; S, van Koningsbruggen; J, Knol; B, Veldhuisen; E R, de Kloet;

Multiple transcripts generated by the DCAMKL gene are expressed in the rat hippocampus

Abstract

We have recently cloned a novel Doublecortin CaMK-like kinase (rDCAMKL) cDNA, and a related cDNA called CaMK-related peptide (CARP) from the rat hippocampus. These genes are structurally highly similar to the human DCAMKL-1 gene and doublecortin, a gene associated with X-linked lissencephaly and subcortical band heterotopia. Here we report on the genomic organization of the murine DCAMKL gene and its products. Our results show that DCAMKL and CARP are alternative splice products of the same gene. The DCAMKL gene also generates three alternatively-spliced rDCAMKL transcripts of which we have cloned the corresponding cDNAs and which potentially generate different DCAMKL proteins. In situ hybridization experiments show that the different rDCAMKL transcripts are all expressed in the adult rat hippocampus. We conclude that alternative splicing of the DCAMKL gene may generate different but similar proteins in the adult rat hippocampus thereby regulating different but overlapping aspects of DCAMKL controlled neuronal plasticity.

Related Organizations
Keywords

Doublecortin Domain Proteins, DNA, Complementary, Doublecortin Protein, Base Sequence, Age Factors, Gene Expression, Exons, Hippocampus, Introns, Alternative Splicing, Mice, Calcium-Calmodulin-Dependent Protein Kinase Type 1, Calcium-Calmodulin-Dependent Protein Kinases, Animals, Humans, Female, Amino Acid Sequence, Carrier Proteins, Calcium-Calmodulin-Dependent Protein Kinase Type 4, Cytoskeleton

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%