Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geochemistry, Geophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geochemistry, Geophysics, Geosystems
Article . 2015 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions

Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen

Authors: Li-Qun Dai; Zi-Fu Zhao; Yong-Fei Zheng; Juan Zhang;

Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen

Abstract

Postcollisional mafic igneous rocks commonly exhibit petrological and geochemical heterogeneities, but their origin still remains enigmatic. While source mixing is substantial due to the crust-mantle interaction during continental collision, magma mixing is also significant during postcollisional magmatism. The two processes are illustrated by Early Cretaceous mafic igneous rocks in the Dabie orogen. These mafic rocks show arc-like trace element distribution patterns and enriched Sr-Nd-Pb isotope compositions, indicating their origination from enriched mantle sources. They have variable whole-rock eNd(t) values of −17.6 to −5.2 and zircon eHf(t) values of −29.0 to −7.7, pointing to source heterogeneities. Such whole-rock geochemical features are interpreted by the source mixing through melt-peridotite reaction in the continental subduction channel. Clinopyroxene and plagioclase megacrystals show complex textural and compositional variations, recording three stages of mineral crystallization during magma evolution. Cpx-1 core has low Cr and Ni but high Ba, Rb and K, indicating its crystallization from a mafic melt (Melt 1) derived from partial melting of hydrous peridotite rich in phlogopite. Cpx-1 mantle and Cpx-2 exhibit significantly high Cr, Ni and Al2O3 but low Rb and Ba, suggesting their crystallization from pyroxenite-derived mafic melt (Melt 2). Whole-rock initial 87Sr/86Sr ratios of gabbro lies between those of Pl-1core (crystallized from Melt 1) and Pl-1 mantle and Pl-2 core (crystallized from Melt 2), providing isotopic evidence for magma mixing between Melt 1 and Melt 2. Taken together, a heterogeneously enriched mantle source would be generated by the source mixing due to reaction of the overlying subcontinental lithospheric mantle wedge peridotite with felsic melts derived from partial melting of different rocks of the deeply subducted continental crust during the continental collision. The magma mixing would occur between mafic melts that were derived from partial melting of the heterogeneously metasomatic mantle domains in the postcollisional stage. As a consequence, the source and magma mixing processes in the continental subduction factory are responsible for the significant variations in the whole-rock and mineral geochemistries of postcollisional mafic igneous rocks.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
gold