Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic & Medicinal Chemistry Letters
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Analogs of 4-(3-bromo-8-methyl-10-methoxy-6,11-dihydro-5H-benzo[5,6]-cyclohepta[1,2-b]pyridin-11-yl)-1-(4-pyridinylacetyl)piperidine N-oxide as inhibitors of farnesyl protein transferase

Authors: A, Afonso; J, Kelly; J, Weinstein; L, James; W R, Bishop;

Analogs of 4-(3-bromo-8-methyl-10-methoxy-6,11-dihydro-5H-benzo[5,6]-cyclohepta[1,2-b]pyridin-11-yl)-1-(4-pyridinylacetyl)piperidine N-oxide as inhibitors of farnesyl protein transferase

Abstract

A series of 3-substituted analogs 3 of 4-(3-bromo-8-methyl-10-methoxy-6,11-dihydro-5H-benzo[5,6]-cyclohepta[1,2 b]pyridin-11-yl)-1-(4-pyridinylacetyl)piperidine N-oxide 2 was prepared and evaluated as FPT inhibitors. The objective of this study was to identify other substituents at C3 in this series of FPT inhibitors that would have the FPT potency enhancement similar to that found for a C3 bromo substituent. The 3-methyl analog 17b was found to be tenfold less active than 2, and other C3 substituents having more steric bulk were found to cause a further reduction in activity.

Related Organizations
Keywords

Inhibitory Concentration 50, Alkyl and Aryl Transferases, Piperidines, Pyridines, Enzyme Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average