Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2008
versions View all 2 versions

Light-quality regulation of freezing tolerance in Arabidopsis thaliana

Authors: Franklin, KA; Whitelam, GC;

Light-quality regulation of freezing tolerance in Arabidopsis thaliana

Abstract

To acquire freezing tolerance, higher plants require a period of low temperature (usually <4 degrees C) termed cold acclimation. Upon transfer of plants to low temperature, increased expression of the CRT/DRE binding factor (CBF) family of transcriptional activators leads to the upregulation of genes containing a C-repeat/drought-responsive (CRT/DRE) promoter element and metabolic changes that enhance tolerance to subzero temperatures. Here, we show that a low red to far-red ratio (R/FR) light signal increases CBF gene expression in Arabidopsis thaliana in a manner dependent on the circadian clock. This light quality-dependent increase in CBF expression is sufficient to confer freezing tolerance at temperatures higher than those required for cold acclimation. Furthermore, the use of light-quality signals to stimulate CBF expression has revealed ambient temperature-dependent coupling of CBF transcription factors to downstream COLD REGULATED (COR) genes, providing evidence for a second temperature-regulated step in this pathway.

Related Organizations
Keywords

580, 570, Light, Arabidopsis Proteins, Arabidopsis, Adaptation, Physiological, Cold Temperature, DNA-Binding Proteins, Gene Expression Regulation, Plant, Phytochrome B, RNA, Plant, Trans-Activators, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    242
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
242
Top 1%
Top 10%
Top 1%