Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tropmed Central Antw...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Immunological Methods
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Intracellular detection of differential APOBEC3G, TRIM5alpha, and LEDGF/p75 protein expression in peripheral blood by flow cytometry

Authors: Mous, K.; Jennes, W.; De Roo, A.; Pintelon, I.; Kestens, L.; Van Ostade, X.;

Intracellular detection of differential APOBEC3G, TRIM5alpha, and LEDGF/p75 protein expression in peripheral blood by flow cytometry

Abstract

Expression studies on specific host proteins predominantly use quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based assay to study intracellular expression levels of three important host proteins involved in HIV-1 replication: apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G), tripartite motif 5alpha (TRIM5α), and lens epithelium-derived growth factor (LEDGF/p75). An indirect intracellular staining (ICS) method was optimized using antibodies designed for other applications like enzyme-linked immunosorbent assay (ELISA), confocal imaging, and western blotting. The median fluorescence intensity (MFI) value--a measure for the protein expression level--increased upon higher antibody concentration and longer incubation time, and was reduced following preincubation with recombinant proteins. Staining of stably transfected or knock-down cell lines supported the method's specificity. Moreover, confocal microscopy analysis of peripheral blood mononuclear cells (PBMC), when stained according to the ICS method, confirmed the localization of APOBEC3G and TRIM5α in the cytoplasm, and of LEDGF/p75 in the nucleus. Also, stimulation with mitogen, interferon-alpha, or interferon-beta resulted in detectable, albeit weak, increases in intracellular expression of APOBEC3G and TRIM5α. After optimization, the method was applied to healthy control and HIV-1 infected subjects. For all subjects studied, the memory subset of CD4+ T cells showed significantly higher expression levels of APOBEC3G, TRIM5α, and LEDGF/p75, while the CD16+ subset of monocytes was characterized by higher expression levels of LEDGF/p75. In addition, we observed that therapy-naïve HIV-1 patients tended to have lower expression levels of APOBEC3G and TRIM5α than HIV-1 negative controls. In summary, our data provide proof-of-principle for the detection of specific host factors at the level of a single cell, which may prove useful for our further understanding of their role in virus-host interactions.

Keywords

570, CD4-positive-T-lymphocytes, Ubiquitin-Protein Ligases, Replication, Expression, Western blot, HIV Infections, Viral diseases, APOBEC-3G Deaminase, Virus Replication, Statistics, Nonparametric, Assays, Antiviral Restriction Factors, Tripartite Motif Proteins, Cytidine Deaminase, Humans, Flow cytometry, RNA, Messenger, Biology, Staining, Fluorescence microscopy, Reverse Transcriptase Polymerase Chain Reaction, Laboratory techniques and procedures, Proteins, Reproducibility of Results, Flow Cytometry, Intracellular, Polymerase chain reaction, AIDS, Detection, PCR, Blood, Mononuclear cells, HIV-1, Leukocytes, Mononuclear, Intercellular Signaling Peptides and Proteins, Human medicine, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
Green