Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science China Life S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science China Life Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science China Life Sciences
Article
License: Springer TDM
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science China Life Sciences
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Functional study of hyperpolarization activated channel (I h ) in Drosophila behavior

Authors: Chen, ZiJing; Wang, ZuoRen;

Functional study of hyperpolarization activated channel (I h ) in Drosophila behavior

Abstract

Hyperpolarization-activated, cyclic nucleotide-gated and cation-nonselective ion channels (I ( h ) channels, or HCN channels) are known to play important roles in mammals. Their physiological functions in invertebrate remain largely unclear. Here, we report our studies with I ( h ) channel in Drosophila melanogaster. Drosophila Ih channel mutants are found with several defects by behavioral analyses. Their lifespan is reduced, and their chemical sensitivity is shifted. In addition, their length of sleep at light-dark condition is mildly reduced. We generated transgenic flies of I ( h ) promoter-driven Gal4 and examined its expression pattern in both larvae and adult flies. Our results suggest that I ( h ) channel may play diverse roles in Drosophila and provide a basis to further expand our understanding of Drosophila Ih channel function in vivo.

Related Organizations
Keywords

Neurons, Potassium Channels, Agricultural and Biological Sciences(all), Behavior, Animal, Biochemistry, Genetics and Molecular Biology(all), Cyclic Nucleotide-Gated Cation Channels, Animals, Genetically Modified, Drosophila melanogaster, Environmental Science(all), Taste, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Animals, Drosophila Proteins, Wings, Animal, Sleep

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Average
gold