Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Research Notesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Research Notes
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Research Notes
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Research Notes
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran

Authors: Bahman Mirzaei; Zahra Norouzi Bazgir; Hamid Reza Goli; Fatemeh Iranpour; Fatemeh Mohammadi; Ryhaneh Babaei;

Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran

Abstract

Abstract Objective Multi and extensively drug-resistant (MDR and XDR), Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are two main causative agents of nosocomial infections leading to increased morbidity and mortality. We aim to study the prevalence of MDR and XDR-A. baumannii and P. aeruginosa phenotypes in clinical specimens. We conducted this for 1 year (2017–2018) and isolated bacteria from the clinical samples. Then, XDR and MDR strains were determined by susceptibility testing (disc diffusion). Results Out of 3248 clinical samples, A. baumannii and P. aeruginosa strains were detected in 309(9.51%) of them. Susceptibility testing indicated that (16.50%) and (15.53%) of the P. aeruginosa and (74.75%) and (73.13%) of the A. baumannii isolates were screened as the MDR and XDR strains. The frequency of MDR isolates was higher in wound samples 222 (71.8%). This rate in behavioral intensive care unit (BICU) and restoration ward, were 187 (60.5%) and 63 (20.4%). The frequency of XDR isolates in BICU 187 (59.54%), restoration 58(18.77%), and burns 30 (9.70%) were assessed as well. Considering high isolation rates of MDR and XDR of mentioned strains, it is necessary to apply prevention criteria for eradication of the mentioned bacteria from hospital wards.

Related Organizations
Keywords

Acinetobacter baumannii, Multi-drug resistant (MDR), Carbapenem resistant A. baumannii, Science (General), QH301-705.5, Extensively-drug resistant (XDR), R, Microbial Sensitivity Tests, Iran, Anti-Bacterial Agents, Q1-390, Research Note, Phenotype, Pharmaceutical Preparations, Drug Resistance, Multiple, Bacterial, Nosocomial infections, Pseudomonas aeruginosa, Prevalence, Medicine, Humans, Biology (General), Acinetobacter Infections

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 1%
Top 10%
Top 1%
Green
gold