Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nitric Oxidearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nitric Oxide
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nitric Oxide
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Nitric Oxide
Article . 2010
versions View all 2 versions

Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON

Authors: Carol A. Cooke; Behzad N. Oskouei; Farideh Beigi; Joshua M. Hare; Guillaume Lamirault; Meizi Zheng;

Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON

Abstract

The mechanism(s) regulating nitric oxide synthase-1 (NOS1) localization within the cardiac myocyte in health and disease remains unknown. Here we tested the hypothesis that the PDZ-binding domain interaction between CAPON (carboxy-terminal PDZ ligand of NOS1), a NOS1 adaptor protein and NOS1, contribute to NOS1 localization in specific organelles within cardiomyocytes. Ventricular cardiomyocytes and whole heart homogenates were isolated from sham and post-myocardial infarction (MI) wild-type (C57BL/6) and NOS1(-/-) female mice for quantification of CAPON protein expression levels. NOS1, CAPON, xanthine oxidoreductase and Dexras1, a CAPON binding partner, were all present and enriched in isolated cardiac sarcoplasmic reticulum (SR) fractions. CAPON co-immunoprecipitated with the mu and alpha isoforms of NOS1 in whole heart lysates, and co-localization of CAPON and NOS1 was demonstrated in the SR and mitochondria with dual immuno-gold electron microscopy. Following MI, CAPON and NOS1 both redistributed to caveolae and colocalized with caveolin-3. In addition, following MI, expression level of CAPON remained unchanged and Dexras1 was reduced, CAPON binding to xanthine oxidoreductase was augmented and the plasma membrane calcium ATPase (PMCA) increased. In NOS1 deficient myocytes, CAPON abundance in the SR was reduced, and redistribution to caveolae and PMCA binding after MI was absent. Together these findings support the hypothesis that NOS1 redistribution in injured myocardium requires the formation of a complex with the PDZ adaptor protein CAPON.

Related Organizations
Keywords

Cell Membrane, Myocardial Infarction, Nitric Oxide Synthase Type I, Mice, Inbred C57BL, Mice, Sarcoplasmic Reticulum, Animals, Immunoprecipitation, Female, Myocytes, Cardiac, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
bronze