Site-specific recognition of SARS-CoV-2 nsp1 protein with a tailored titanium dioxide nanoparticle
Site-specific recognition of SARS-CoV-2 nsp1 protein with a tailored titanium dioxide nanoparticle
AbstractThe ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In recent years nanoparticles have been shown to interact with peptides, ranging in size from single amino acids up to proteins. These nanoparticles can be tailor-made with specific functions and properties including bioavailability. To the best of our knowledge, in this study we show for the first time that a tailored titanium oxide nanoparticle interacts specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein. This can be developed potentially into a tool for selective control of viral protein functions.
- University of Alabama at Birmingham United States
- Swedish University of Agricultural Sciences Sweden
- UNIVERSITY OF ALABAMA AT BIRMINGHAM
- Department of Microbiology United States
- University of Alabama at Birmingham, Department of Microbiology United States
Article
Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
