Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Population Structure of theBacillus cereusGroup as Determined by Sequence Analysis of Six Housekeeping Genes and theplcRGene

Authors: Kwan Soo, Ko; Jong-Wan, Kim; Jong-Man, Kim; Wonyong, Kim; Sang-in, Chung; Ik Jung, Kim; Yoon-Hoh, Kook;

Population Structure of theBacillus cereusGroup as Determined by Sequence Analysis of Six Housekeeping Genes and theplcRGene

Abstract

ABSTRACTThe population structure of theBacillus cereusgroup (52 strains ofB. anthracis,B. cereus, andB. thuringiensis) was investigated by sequencing seven gene fragments (rpoB,gyrB,pycA,mdh,mbl,mutS, andplcR). Most of the strains were classifiable into two large subgroups in six housekeeping gene trees but not in theplcRtree. In addition, several consistent clusters were identified, which were unrelated to species distinction. Moreover, interrelationships among these clusters were incongruent in each gene tree. The incongruence length difference test and split decomposition analyses also showed incongruences between genes, suggesting horizontal gene transfer. TheplcRgene was observed to have characteristics that differed from those of the other genes in terms of phylogenetic topology and pattern of sequence diversity. Thus, we suggest that the evolutionary history of the PlcR regulon differs from those of the other chromosomal genes and that recombination of theplcRgene may be frequent. The homogeneity ofB. anthracis, which is depicted as an independent lineage in phylogenetic trees, is suggested to be of recent origin or to be due to the narrow taxonomic definition of species.

Keywords

Recombination, Genetic, Molecular Sequence Data, Bacillus thuringiensis, Genetic Variation, Sequence Analysis, DNA, Evolution, Molecular, Bacillus cereus, Bacterial Proteins, Bacillus anthracis, Trans-Activators, Animals, Humans, Cattle, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
gold