Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2002
Data sources: PubMed Central
The Journal of Cell Biology
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

A cryptic fragment from fibronectin's III1 module localizes to lipid rafts and stimulates cell growth and contractility

Authors: Hocking, Denise C.; Kowalski, Katherine;

A cryptic fragment from fibronectin's III1 module localizes to lipid rafts and stimulates cell growth and contractility

Abstract

The interaction of cells with the extracellular matrix (ECM) form of fibronectin (FN) triggers changes in growth, migration, and cytoskeletal organization that differ from those generated by soluble FN. As cells deposit and remodel their FN matrix, the exposure of new epitopes may serve to initiate responses unique to matrix FN. To determine whether a matricryptic site within the III1 module of FN modulates cell growth or cytoskeletal organization, a recombinant FN with properties of matrix FN was constructed by directly linking the cryptic, heparin-binding COOH-terminal fragment of III1 (III1H) to the integrin-binding III8–10 modules (glutathione-S-transferase [GST]–III1H,8–10). GST–III1H,8–10 specifically stimulated increases in cell growth and contractility; integrin ligation alone was ineffective. A construct lacking the integrin-binding domain (GST–III1H,2–4) retained the ability to stimulate cell contraction, but was unable to stimulate cell growth. Both GST–III1H,2–4 and matrix FN colocalized with caveolin and fractionated with low-density membrane complexes by a mechanism that required heparan sulfate proteoglycans. Disruption of caveolae inhibited the FN- and III1H-mediated increases in cell contraction and growth. These data suggest that a portion of ECM FN partitions into lipid rafts and differentially regulates cytoskeletal organization and growth, in part, through the exposure of a neoepitope within the conformationally labile III1 module.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Heparin, Recombinant Fusion Proteins, Caveolin 1, Cell Membrane, Immunoblotting, Caveolins, Article, Fibronectins, Protein Structure, Tertiary, Mice, Membrane Microdomains, Heparin Lyase, Microscopy, Fluorescence, Animals, Humans, Collagen, Cell Division, Cells, Cultured, Cytoskeleton, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
Green
bronze