Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cancer Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cancer Research and Clinical Oncology
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Paraoxonase-2 (PON2) protects oral squamous cell cancer cells against irradiation-induced apoptosis

Authors: Maximilian, Krüger; Andreas Max, Pabst; Bilal, Al-Nawas; Sven, Horke; Maximilian, Moergel;

Paraoxonase-2 (PON2) protects oral squamous cell cancer cells against irradiation-induced apoptosis

Abstract

Patients with oral squamous cell carcinomas (OSCC) often receive radiotherapy to preferentially induce apoptosis of cancer cells through generation of overwhelming DNA damage. This is amplified by generation of reactive oxygen species (ROS), thereby causing oxidative stress and cell death. However, tumors resist through different mechanisms, including upregulation of anti-apoptotic factors and enhanced ROS resistance. We recently reported that the antioxidative enzyme PON2 significantly enhances cellular stress resistance by attenuating mitochondrial ROS-mediated apoptosis. Further, PON2 is often upregulated in cancer. This prompted us to investigate its yet unknown role in the protection of OSCC against irradiation-induced cell death.PON2 expression was determined after 7 Gy singular irradiation in four OSCC cell lines (PCI-13, PCI-52, SCC-4, SCC-68) accompanied by the detection of caspase 3/7 activity. A direct role of PON2 was tested by siRNA-mediated knockdown. In vivo PON2 expression was tested in five patients with oral carcinoma and compared with healthy mucosa for the evaluation of clinical significance.PON2 is variably expressed in OSCC in vitro and in vivo. Compared with the other cell lines, SCC-4 cells showed twofold more basal PON2 (p ≤ 0.05) and the lowest caspase 3/7 activity after singular irradiation (p ≤ 0.05). Contrarily, irradiation led to 1.2-fold induction of PON2 in PCI-13 with no effect on SCC-4 (≤0.05), suggesting that PON2 levels reflect the cells' irradiation sensitivity. In agreement, PON2 knockdown resulted in significant higher apoptosis rates (p ≤ 0.05).Our findings give first evidence that upregulation of PON2 may protect OSCC against irradiation-induced apoptosis.

Keywords

Caspase 7, Aryldialkylphosphatase, Caspase 3, Apoptosis, Radiation Tolerance, Mitochondria, Oxidative Stress, Cell Line, Tumor, Carcinoma, Squamous Cell, Humans, Mouth Neoplasms, RNA, Small Interfering, Reactive Oxygen Species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%