Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction

Authors: Ma, Hong; Saenko, Maryanna; Opuko, Anthony; Togawa, Akashi; Soda, Keita; Marlier, Arnaud; Moeckel, Gilbert W.; +2 Authors

Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction

Abstract

Hepatocyte growth factor and its receptor, Met, activate biological pathways necessary for repair and regeneration following kidney injury. The Met receptor is expressed in multiple cell types within the kidney, each of which is capable of regulating fibrotic responses. To specifically address the role of the Met receptor in the adult collecting duct during renal injury, a conditional knockout mouse (Met(fl/fl);HoxB7-Cre) was generated and tested using unilateral ureteral obstruction, a model of nephron injury, fibrosis, and repair. Following obstruction in these mice there was increased expression of collagens I and IV along with plasminogen activator inhibitor 1, a known regulator of matrix degradation, compared to ureteral obstructed non-flox littermates. There were trends toward increased interstitial fibrosis, infiltration of the interstitium, and acute tubular necrosis in the knockout mice despite similar degrees of hydronephrosis to the control littermates. The Met(fl/fl);HoxB7-Cre mice; however, had reduced tubular cell proliferation and kidney regenerative capacity after release of the obstruction, thus leading to diminished functional recovery. We suggest that Met receptor signaling in the collecting duct acts as a major regulator of cell survival and propagation of the repair process with a possible secondary role to diminish inflammatory and fibrotic responses.

Keywords

Time Factors, proliferation, Met receptor, Apoptosis, Hydronephrosis, Mice, Necrosis, Animals, Regeneration, Hgf, Kidney Tubules, Collecting, Cell Proliferation, Mice, Knockout, Extracellular Matrix Proteins, UUO, fibrosis, Recovery of Function, Proto-Oncogene Proteins c-met, Fibrosis, Mice, Inbred C57BL, Disease Models, Animal, Nephrology, repair, Ureteral Obstruction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
hybrid