Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1

Authors: Varadi, Aniko; Johnson-Cadwell, Linda I.; Cirulli, Vincenzo; Yoon, Yisang; Allan, Victoria J.; Rutter, Guy A.;

Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1

Abstract

While the subcellular organisation of mitochondria is likely to influence many aspects of cell physiology, its molecular control is poorly understood. Here, we have investigated the role of the retrograde motor protein complex, dynein-dynactin, in mitochondrial localisation and morphology. Disruption of dynein function, achieved in HeLa cells either by over-expressing the dynactin subunit, dynamitin (p50), or by microinjection of an anti-dynein intermediate chain antibody, resulted in (a) the redistribution of mitochondria to the nuclear periphery, and (b) the formation of long and highly branched mitochondrial structures. Suggesting that an alteration in the balance between mitochondrial fission and fusion may be involved in both of these changes, overexpression of p50 induced the translocation of the fission factor dynamin-related protein (Drp1) from mitochondrial membranes to the cytosol and microsomes. Moreover, a dominant-negative-acting form of Drp1 mimicked the effects of p50 on mitochondrial morphology, while wild-type Drp1 almost completely restored normal mitochondrial distribution in p50 over-expressing cells. Thus, the dynein/dynactin complex plays an unexpected role in the regulation of mitochondrial morphology in living cells, by controlling the recruitment of Drp1 to these organelles.

Keywords

Cell Nucleus, Dynamins, Fission, Dyneins, Dynactin Complex, Motor proteins, Microtubules, Cytoplasmic dynein, Cell Compartmentation, GTP Phosphohydrolases, Mitochondria, Mitochondrial Proteins, Cytosol, Microscopy, Electron, Transmission, Humans, Microtubule-Associated Proteins, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    215
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
215
Top 1%
Top 1%
Top 1%
bronze