Role of NRSF/REST in the Regulation of Cardiac Gene Expression and Function
pmid: 24126098
Role of NRSF/REST in the Regulation of Cardiac Gene Expression and Function
Alterations in the cardiac gene program affect both cardiac structure and function, and play a key role in the progression of pathological cardiac remodeling and heart failure. For instance, reactivation of fetal cardiac genes in adults is a consistent feature of cardiac hypertrophy and heart failure. Investigation of the transcriptional regulation of cardiac genes revealed a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also called repressor element-1 silencing factor (REST), to be an important regulator of multiple fetal cardiac genes. Inhibition of NRSF in the heart leads to cardiac dysfunction and sudden arrhythmic death accompanied by re-expression of various fetal genes, including those encoding fetal ion channels, such as the HCN channels and T-type Ca(2+) channels. These findings shed light on the crucial regulatory function of NRSF in the heart and its importance for maintaining normal cardiac integrity.
- Kyoto University Japan
Adult, Heart Failure, Repressor Proteins, Calcium Channels, T-Type, Death, Sudden, Cardiac, Gene Expression Regulation, Ventricular Remodeling, Myocardium, Humans, Muscle Proteins
Adult, Heart Failure, Repressor Proteins, Calcium Channels, T-Type, Death, Sudden, Cardiac, Gene Expression Regulation, Ventricular Remodeling, Myocardium, Humans, Muscle Proteins
17 Research products, page 1 of 2
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
