<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Structural evidence for leucine at the reactive site of heparin cofactor II

doi: 10.1021/bi00345a008
pmid: 3907702
Structural evidence for leucine at the reactive site of heparin cofactor II
The reaction products formed during the enzymatic inactivation of heparin cofactor II (HCII) by a proteinase isolated from Echis carinatus were analyzed by sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gel electrophoresis and by reverse-phase high-performance liquid chromatography. By NaDodSO4-polyacrylamide gel electrophoresis, limited proteolysis of HCII was observed, which resulted in a decrease in the apparent molecular weight of the protein from approximately 68 000 to approximately 53 000. By reverse-phase high-performance liquid chromatography, at least 20 peptides were observed. Primary structure analysis of these peptides indicated that significant proteolysis had occurred in the NH2-terminal region of the protein. HCII inactivation, however, coincided with the appearance of a peptide from the COOH-terminal region of the protein. The peptide differed from the previously identified reactive site peptide [Griffith, M. J., Noyes, C. M., & Church, F. C. (1985) J. Biol. Chem. 260, 2218-2225] by only one residue: a leucyl residue at the NH2-terminal of the peptide. We conclude that leucine, as opposed to the expected arginine, is at the reactive site of HCII.
- University of North Carolina at Chapel Hill United States
- University of North Carolina System United States
Binding Sites, Antithrombins, Peptide Fragments, Molecular Weight, Kinetics, Leucine, Heparin Cofactor II, Humans, Electrophoresis, Polyacrylamide Gel, Glycoproteins, Peptide Hydrolases
Binding Sites, Antithrombins, Peptide Fragments, Molecular Weight, Kinetics, Leucine, Heparin Cofactor II, Humans, Electrophoresis, Polyacrylamide Gel, Glycoproteins, Peptide Hydrolases
1 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%