Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Omegaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2021
Data sources: DOAJ
versions View all 4 versions

Mechanistic Investigation of Xuebijing for Treatment of Paraquat-Induced Pulmonary Fibrosis by Metabolomics and Network Pharmacology

Authors: Tongtong Wang; Sha Li; Yangke Wu; Xiao Yan; Yiming Zhu; Yu Jiang; Feiya Jiang; +1 Authors

Mechanistic Investigation of Xuebijing for Treatment of Paraquat-Induced Pulmonary Fibrosis by Metabolomics and Network Pharmacology

Abstract

After paraquat (PQ) poisoning, it is difficult to accurately diagnose patients' condition by only measuring their blood PQ concentration. Therefore, it is important to establish an accurate method to assist in the diagnosis of PQ poisoning, especially in the early stages. In this study, a gas chromatography-mass spectrometry (GC-MS) metabonomics strategy was established to obtain metabolite information. A random forest algorithm was used to search for potential biomarkers of PQ poisoning, and data mining and network pharmacological analysis were used to evaluate the active components, drug-disease targets, and key pathways of Xuebijing (XBJ) injection in the treatment of PQ-induced pulmonary fibrosis. Targets from the network pharmacology analysis and metabolites from plasma metabolomics were jointly analyzed to select crucial metabolic pathways. Finally, molecular docking technology and in vitro experiments were used to verify the pathway targets to further reveal the potential mechanisms underlying the antipulmonary fibrosis effect of XBJ. Metabonomics studies showed that l-valine, glycine, citric acid, d-mannose, d-galactose, maltose, l-tryptophan, and arachidonic acid contributed more to the differentiation of different groups than other metabolites. Compared with the control group, the PQ poisoning group had higher levels of l-valine, glycine, citric acid, l-tryptophan, and arachidonic acid, and lower levels of d-mannose, d-galactose, and maltose. After treatment with XBJ injection, the relative levels of these metabolites were reversed. The network pharmacological analysis screened a total of 180 targets, mainly involving multiple signaling pathways and metabolic pathways, which jointly played an antipulmonary fibrosis effect. Based on the combined analysis of 180 targets and 8 different metabolites, arachidonic acid metabolism was selected as the key metabolic pathway. Molecular docking analysis showed that the XBJ compound had strong binding activity with the target protein. Western blot results showed that XBJ injection could reduce the inflammatory response by downregulating the expressions of p-p65, p-IKBα, and p-IKKβ, thus inhibiting the development of PQ-induced pulmonary fibrosis. In summary, the combined results from metabolomics and network pharmacology studies showed that Xuebijing has the characteristics of multitarget, multichannel, and multicomponent action in the treatment of pulmonary fibrosis caused by PQ.

Related Organizations
Keywords

Chemistry, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
gold