STAT3 Cooperates With Phospholipid Scramblase 2 to Suppress Type I Interferon Response
STAT3 Cooperates With Phospholipid Scramblase 2 to Suppress Type I Interferon Response
Type I interferon (IFN-I) is a pluripotent cytokine that modulates innate and adaptive immunity. We have previously shown that STAT3 suppresses IFN-I response in a manner dependent on its N-terminal domain (NTD), but independent of its DNA-binding and transactivation ability. Using the yeast two-hybrid system, we have identified phospholipid scramblase 2 (PLSCR2) as a STAT3 NTD-binding partner and a suppressor of IFN-I response. Overexpression of PLSCR2 attenuates ISRE-driven reporter activity, which is further aggravated by co-expression of STAT3. Moreover, PLSCR2 deficiency enhances IFN-I-induced gene expression and antiviral activity without affecting the activation or nuclear translocation of STAT1 and STAT2 or the assembly of ISGF3 complex. Instead, PLSCR2 impedes promoter occupancy by ISGF3, an effect further intensified by the presence of STAT3. Moreover, palmitoylation of PLSCR2 is required for its binding to STAT3 and for this suppressive activity. In addition to STAT3, PLSCR2 also interacts with STAT2, which facilitates the suppressive effect on ISGF3-mediated transcriptional activity. Together, these results define the role of a novel STAT3-PLSCR2 axis in fine-tuning IFN-I response.
- Karolinska Institute Sweden
- New York University United States
- National Taiwan University Taiwan
- National Taiwan University of Arts Taiwan
- New York University United States
STAT3 Transcription Factor, Immunology, Models, Biological, Cell Line, STAT3, Gene Knockout Techniques, Mice, Two-Hybrid System Techniques, Animals, Humans, palmitoylation, Phospholipid Transfer Proteins, RNA, Small Interfering, Cell Nucleus, Gene Expression Profiling, RC581-607, Gene Expression Regulation, Host-Pathogen Interactions, Interferon Type I, IFN-stimulated gene, type I interferon, Cytokines, phospholipid scramblase 2, Immunologic diseases. Allergy, Protein Binding
STAT3 Transcription Factor, Immunology, Models, Biological, Cell Line, STAT3, Gene Knockout Techniques, Mice, Two-Hybrid System Techniques, Animals, Humans, palmitoylation, Phospholipid Transfer Proteins, RNA, Small Interfering, Cell Nucleus, Gene Expression Profiling, RC581-607, Gene Expression Regulation, Host-Pathogen Interactions, Interferon Type I, IFN-stimulated gene, type I interferon, Cytokines, phospholipid scramblase 2, Immunologic diseases. Allergy, Protein Binding
4 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
