Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2010
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2009
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

GLI1 Is a Central Mediator of EWS/FLI1 Signaling in Ewing Tumors

Authors: Elizabeth R. Lawlor; William A. May; Hyung Gyoo Kang; Kieuhoa Vo; Leith States; Jay Joo; Laura Christensen; +1 Authors

GLI1 Is a Central Mediator of EWS/FLI1 Signaling in Ewing Tumors

Abstract

The Ewing Sarcoma Family Tumors (ESFT) consist of the classical pathologic entities of Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor. Occurring largely in the childhood through young adult years, these tumors have an unsurpassed propensity for metastasis and have no defined cell of origin. The biology of these aggressive malignancies centers around EWS/FLI1 and related EWS/ETS chimeric transcription factors, which are largely limited to this tumor class. Much progress has been made in the identification of a network of loci whose expression is modulated by EWS/FLI1 and its congeners. To date, little progress has been made in reconstructing the sequence of direct and indirect events that produce this network of modulated loci. The recent identification of GLI1 as an upregulated target of EWS/ETS transcription factors suggests a target which may be a more central mediator in the ESFT signaling network. In this paper, we further define the relationship of EWS/FLI1 expression and GLI1 upregulation in ESFT. This relationship is supported with data from primary tumor specimens. It is consistently observed across multiple ESFT cell lines and with multiple means of EWS/FLI1 inhibition. GLI1 inhibition affects tumor cell line phenotype whether shRNA or endogenous or pharmacologic inhibitors are employed. As is seen in model transformation systems, GLI1 upregulation by EWS/FLI1 appears to be independent of Hedgehog stimulation. Consistent with a more central role in ESFT pathogenesis, several known EWS/FLI1 targets appear to be targeted through GLI1. These findings further establish a central role for GLI1 in the pathogenesis of Ewing Tumors.

Keywords

Oncogene Proteins, Fusion, Transcription, Genetic, Proto-Oncogene Protein c-fli-1, Science, Q, R, Sarcoma, Ewing, Models, Biological, Polymerase Chain Reaction, Zinc Finger Protein GLI1, Gene Expression Regulation, Neoplastic, Phenotype, Retroviridae, Cell Line, Tumor, Medicine, Humans, RNA Interference, RNA-Binding Protein EWS, Research Article, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
Green
gold