Powered by OpenAIRE graph

Association of HTR2C , But Not LEP or INSIG2 , Genes with Antipsychotic-Induced Weight Gain in a German Sample

Authors: Carolin, Opgen-Rhein; Eva Janina, Brandl; Daniel J, Müller; Andres H, Neuhaus; Arun K, Tiwari; Thomas, Sander; Michael, Dettling;

Association of HTR2C , But Not LEP or INSIG2 , Genes with Antipsychotic-Induced Weight Gain in a German Sample

Abstract

Drug-induced bodyweight gain (BWG) is a serious concern in pharmacotherapy with second-generation antipsychotics. The interindividual variability is likely to be modulated by genetic factors. In the past, pharmacogenetic studies yielded conflicting results, and none of the identified genetic alterations exerts sufficient predictive value for this severe side effect of psychopharmacotherapy.We aimed to contribute to the replication and extension of prior association findings and investigated the genes encoding serotonin 2C receptor (HTR2C), insulin-induced gene 2 (INSIG2) and leptin (LEP).We investigated the association of HTR2C, LEP and INSIG2 SNPs with antipsychotic-induced BWG in 128 German schizophrenic patients. Genotyping was performed for nine SNPs (HTR2C: rs498207, rs3813928, rs6318 and rs3813929; INSIG2: rs17587100, rs10490624, rs17047764 and rs7566605; LEP: rs7799039). Association analysis included logistic regression analysis and Pearson s chi(2) tests.We report a significant association of three HTR2C SNPs (rs498207, rs3813928 and rs3813929) and of the respective haplotype with antipsychotic-induced BWG. Regarding the X-chromosomal SNP rs498207, individuals with AA/A genotype gained more weight than those with GG/G genotype. The association observed with the SNP rs498207 was also significant after correcting for multiple testing (p = 0.0196). No association was found for INSIG2 and LEP SNPs.The results contribute to the accumulating evidence for an association of the X-chromosomal HTR2C gene with antipsychotic-induced BWG. The proposed underlying mechanisms include decreased HTR2C gene expression with reduced 5-HT-modulated activation of hypothalamic proopiomelanocortin-neurons, and inverse 5-HT(2C) agonism in the presence of D(2) receptor antagonism.

Keywords

Adult, Leptin, Male, Adolescent, Genotype, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Middle Aged, Polymorphism, Single Nucleotide, Logistic Models, Genes, X-Linked, Case-Control Studies, Germany, Receptor, Serotonin, 5-HT2C, Humans, Female, Alleles, Aged, Antipsychotic Agents, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%