Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao genesisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1002/dvg....
Article . 2013 . Peer-reviewed
Data sources: SNSF P3 Database
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2014
versions View all 4 versions

Dual requirement of ectodermal Smad4 during AER formation and termination of feedback signaling in mouse limb buds

Authors: Benazet, J. D.; Zeller, R.;

Dual requirement of ectodermal Smad4 during AER formation and termination of feedback signaling in mouse limb buds

Abstract

BMP signaling is pivotal for normal limb bud development in vertebrate embryos and genetic analysis of receptors and ligands in the mouse revealed their requirement in both mesenchymal and ectodermal limb bud compartments. In this study, we genetically assessed the potential essential functions of SMAD4, a mediator of canonical BMP/TGFß signal transduction, in the mouse limb bud ectoderm. Msx2‐Cre was used to conditionally inactivate Smad4 in the ectoderm of fore‐ and hindlimb buds. In hindlimb buds, the Smad4 inactivation disrupts the establishment and signaling by the apical ectodermal ridge (AER) from early limb bud stages onwards, which results in severe hypoplasia and/or aplasia of zeugo‐ and autopodal skeletal elements. In contrast, the developmentally later inactivation of Smad4 in forelimb buds does not alter AER formation and signaling, but prolongs epithelial‐mesenchymal feedback signaling in advanced limb buds. The late termination of SHH and AER‐FGF signaling delays distal progression of digit ray formation and inhibits interdigit apoptosis. In summary, our genetic analysis reveals the temporally and functionally distinct dual requirement of ectodermal Smad4 during initiation and termination of AER signaling. genesis 51:660–666. © 2013 Wiley Periodicals, Inc.

Related Organizations
Keywords

Feedback, Physiological, Mice, Inbred C57BL, Mice, Epithelial-Mesenchymal Transition, Limb Buds, Ectoderm, Animals, Gene Expression Regulation, Developmental, Apoptosis, Smad4 Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%