Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Both foxj1a and foxj1b are implicated in left–right asymmetric development in zebrafish embryos

Authors: Tian, Tian; Long, Zhao; Min, Zhang; Xinyi, Zhao; Anming, Meng;

Both foxj1a and foxj1b are implicated in left–right asymmetric development in zebrafish embryos

Abstract

The HNF-3/HFH-4/Foxj1, a transcription factor, has been reported to be involved in systemic autoimmunity and cilia genesis in vertebrates. The zebrafish genome expressed two paralogous foxj1 genes, foxj1a and foxj1b. In this study, we demonstrate that down-regulation of either foxj1a or foxj1b by injecting antisense morpholino at the one-cell stage results in randomized expression of the early left-right (LR) asymmetric markers lefty2, southpaw, pitx2c and the later internal organ markers tpm4-tv1, cmlc2, cp in zebrafish embryos. Overexpression of foxj1a and foxj1b by injecting synthetic mRNAs also disrupts normal LR asymmetries. These data indicate that the two foxj1 genes are required for normal laterality development in zebrafish embryos. In contrast to foxj1b knockdown exclusively in dorsal forerunner cells (DFCs) that has little effect on laterality, foxj1a knockdown in DFCs randomizes the LR patterns of the markers. Thus, foxj1a regulates asymmetric development through DFCs in a cell-autonomous fashion but foxj1b functions indirectly.

Related Organizations
Keywords

Homeodomain Proteins, Embryo, Nonmammalian, Left-Right Determination Factors, Gene Expression Regulation, Developmental, Forkhead Transcription Factors, Zebrafish Proteins, Gene Knockdown Techniques, Homeobox Protein PITX2, Animals, Zebrafish, Body Patterning, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%