Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Developmental Neuroscience
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds

Authors: B, Fritzsch; P A, Sarai; M, Barbacid; I, Silos-Santiago;

Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds

Abstract

AbstractThe alleged ability of taste afferents to induce taste buds in developing animals is investigated using a mouse model with a targeted deletion of the tyrosine kinase receptor trkB for the neurotrophin BDNF. This neurotrophin was recently shown to be expressed in developing taste buds and the receptor trkB has been shown to be expressed in the developing ganglion cells that innervate the taste buds. Our data show a reduction of geniculate ganglion cells to about 5% of control animals in neonates. Degeneration of ganglion cells starts when processes reach the central target (solitary tract) but before they reach the peripheral target (taste buds). Degeneration of ganglion cells is almost completed in trkB knockout mice before taste afferents reach in control animals the developing fungiform papillae. Four days later the first taste buds can be identified in fungiform papillae of both control and trkB knockout mice in about equal number and density. Many taste buds undergo a normal maturation compared to control animals. However, the more lateral and caudal fungiform papillae grow less in size and become less conspicuous in older trkB knockout mice. No intragemmal innervation can be found in trkB knockout taste buds but a few extragemmal fibers enter the apex and end between taste bud cells without forming specialized synapses. Taste buds of trkB knockout mice appear less well organized than those of control mice, but some cells show similar vesicle accumulations as control taste bud cells in their base but no synaptic contact to an afferent. These data strongly suggest that the initial development of many fungiform papillae and taste buds is independent of the specific taste innervation. It remains to be shown why others appear to be more dependent on proper innervation.

Keywords

Mice, Knockout, Histocytochemistry, Receptor Protein-Tyrosine Kinases, Apoptosis, Cell Count, Receptors, Nerve Growth Factor, Taste Buds, Facial Nerve, Mice, Nerve Fibers, Ganglia, Sensory, Tongue, Mutation, Neural Pathways, Animals, Chorda Tympani Nerve, Receptor, Ciliary Neurotrophic Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 1%