Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurobiology of Dise...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2009
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Progressive thalamocortical neuron loss in Cln5 deficient mice: Distinct effects in Finnish variant late infantile NCL

Authors: von Schantz, Carina; Kielar, Catherine; Hansen, Stine N.; Pontikis, Charlie C.; Alexander, Noreen A.; Kopra, Outi; Jalanko, Anu; +1 Authors

Progressive thalamocortical neuron loss in Cln5 deficient mice: Distinct effects in Finnish variant late infantile NCL

Abstract

Finnish variant LINCL (vLINCL(Fin)) is the result of mutations in the CLN5 gene. To gain insights into the pathological staging of this fatal pediatric disorder, we have undertaken a stereological analysis of the CNS of Cln5 deficient mice (Cln5-/-) at different stages of disease progression. Consistent with human vLINCL(Fin), these Cln5-/- mice displayed a relatively late onset regional atrophy and generalized cortical thinning and synaptic pathology, preceded by early and localized glial responses within the thalamocortical system. However, in marked contrast to other forms of NCL, neuron loss in Cln5-/- mice began in the cortex and only subsequently occurred within thalamic relay nuclei. Nevertheless, as in other NCL mouse models, this progressive thalamocortical neuron loss was still most pronounced within the visual system. These data provide unexpected evidence for a distinctive sequence of neuron loss in the thalamocortical system of Cln5-/- mice, diametrically opposed to that seen in other forms of NCL.

Country
United Kingdom
Keywords

Batten disease, Lysosomal storage disorder, 610, Neurosciences. Biological psychiatry. Neuropsychiatry, Mice, Thalamus, Neuronal Ceroid-Lipofuscinoses, Neural Pathways, Animals, Genetic Predisposition to Disease, Visual Pathways, Age of Onset, Thalamocortical neurodegeneration, Finland, Cerebral Cortex, Mice, Knockout, Membrane Glycoproteins, CLN5, Lysosomal Membrane Proteins, Mice, Inbred C57BL, Disease Models, Animal, Finnish variant late infantile neuronal ceroid lipofuscinosis, Mutation, Nerve Degeneration, Disease Progression, Atrophy, RC321-571

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
gold