Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking

Authors: Hadano, S; Benn, S C; Kakuta, S; Otomo, A; Sudo, K; Kunita, R; Suzuki, Utsunomiya K; +6 Authors

Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking

Abstract

ALS2/alsin is a member of guanine nucleotide exchange factors for the small GTPase Rab5 (Rab5GEFs), which act as modulators in endocytic pathway. Loss-of-function mutations in human ALS2 account for a number of juvenile recessive motor neuron diseases (MNDs). However, the normal physiological role of ALS2 in vivo and the molecular mechanisms underlying motor dysfunction are still unknown. To address these issues, we have generated mice homozygous for disruption of the Als2 gene. The Als2-null mice observed through 21 months of age demonstrated no obvious developmental, reproductive or motor abnormalities. However, immunohistochemical and electrophysiological analyses identified an age-dependent, slowly progressive loss of cerebellar Purkinje cells and disturbance of spinal motor neurons associated with astrocytosis and microglial cell activation, indicating a subclinical dysfunction of motor system in Als2-null mice. Further, quantitative epidermal growth factor (EGF)-uptake analysis identified significantly smaller-sized EGF-positive endosomes in Als2-null fibroblasts, suggesting an alteration of endosome/vesicle trafficking in the cells. Collectively, while loss of ALS2 does not produce a severe disease phenotype in mice, these Als2-null animals should provide a useful model with which to understand the interplay between endosomal dynamics and the long-term viability of large neurons such as Purkinje cells and spinal motor neurons.

Country
United States
Related Organizations
Keywords

Mice, Knockout, Motor Neurons, 570, Analysis of Variance, Epidermal Growth Factor, Blotting, Western, Age Factors, 610, Biological Transport, Endosomes, Immunohistochemistry, Electrophysiology, Blotting, Southern, Mice, Purkinje Cells, Animals, Guanine Nucleotide Exchange Factors, Nervous System Diseases, Carrier Proteins, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 1%
bronze