Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Structure and F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Structure and Function
Article . 2005 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Phosphorylation of RanGAP1 Stabilizes Its Interaction with Ran and RanBP1

Authors: Miki Hieda; Miki Hieda; Yoshihiro Yoneda; Eri Takeda; Jun Katahira;

Phosphorylation of RanGAP1 Stabilizes Its Interaction with Ran and RanBP1

Abstract

Ran is a nuclear Ras-like GTPase that is required for various nuclear events including the bi-directional transport of proteins and ribonucleoproteins through the nuclear pore complex, spindle formation, and reassembly of the nuclear envelope. One of the key regulators of Ran is RanGAP1, a Ran specific GTPase activating protein. The question of whether a mechanism exists for controlling nucleocytoplasmic transport through the regulation of RanGAP1 activity continues to be debated. Here we show that RanGAP1 is phosphorylated in vivo and in vitro. Serine-358 (358S) was identified as the major phosphorylation site, by MALDI-TOF-MS spectrometry. Site directed mutagenesis at this position abolished the phosphorylation. Experiments using purified recombinant kinase and specific inhibitors such as DRB and apigenin strongly suggest that casein kinase II (CK2) is the responsible kinase. Although the phosphorylation of 358S of RanGAP1 did not significantly alter its GAP activity, the phosphorylated wild type RanGAP1, but not a mutant harboring a mutation at the phosphorylation site 358S, efficiently formed a stable ternary complex with Ran and RanBP1 in vivo, suggesting that the 358S phosphorylation of RanGAP1 affects the Ran system.

Related Organizations
Keywords

Recombinant Fusion Proteins, Blotting, Western, GTPase-Activating Proteins, Molecular Sequence Data, Nuclear Proteins, Kidney, Peptide Fragments, Cell Line, Phosphoserine, Protein Interaction Mapping, Animals, Humans, Amino Acid Sequence, Rabbits, Apigenin, Phosphorylation, Protein Kinase Inhibitors, Protein Processing, Post-Translational, Dichlororibofuranosylbenzimidazole, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Average
gold