Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Plant Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Plant Research
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana

Authors: Linna, Leng; Qianqian, Liang; Jianjun, Jiang; Chi, Zhang; Yuhan, Hao; Xuelu, Wang; Wei, Su;

A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana

Abstract

Members of the HSP70 family function as molecular chaperones to maintain cellular homeostasis and help plants cope with environmental stimuli. However, due to functional redundancy and lack of effective chemical inhibitors, our knowledge of functions of individual HSP70s has remained limited. Here, we confirmed a subclass of HSP70s, including HSP70-1, -2, -3, -4, and -5, localized to the cytosol and nucleus in Arabidopsis thaliana. Histochemical analyses of promoter:GUS reporter lines showed that HSP70-1, -2, -3, and -4 genes were widely expressed, but HSP70-5 was not. In addition, individual HSP70 showed not only similar but also distinct transcriptions when treated by different abiotic stresses and phytohormones. No apparent phenotype was observed when individual HSP70 genes were overexpressed or knocked-out/down, but the double mutant hsp70-1 hsp70-4 and triple mutant hsp70-2 hsp70-4 hsp70-5 plants exhibited developmental phenotypes with shortened specific growth periods, curly and round leaves, twisted petioles, thin stems, and short siliques. Moreover, both mutants were hypersensitive to heat, cold, high glucose, salt and osmotic stress, but hyposensitive to abscisic acid. Genes related to flowering, and the cytokinin, brassinosteroid, and abscisic acid signaling pathways were differentially expressed in both mutants. Our studies suggest that, the individual HSP70 possibly performs both redundant and specific functions with the other members in the cytosolic/nuclear HSP70 subclass, and apart from enabling plants to cope with abiotic stresses, this subclass of cytosolic/nuclear HSP70 proteins also participates in diverse developmental processes and signaling pathways.

Related Organizations
Keywords

Plant Growth Regulators, Arabidopsis Proteins, Gene Expression Regulation, Plant, Stress, Physiological, Arabidopsis, HSP70 Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 10%