Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Death and Disea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY NC ND
Data sources: PubMed Central
versions View all 3 versions

Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation

Authors: Fu, Y; Yang, G; Zhu, F; Peng, C; Li, W; Li, H; Kim, H-G; +3 Authors

Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation

Abstract

Although the rate of development of drug resistance remains very high, 5-fluorouracil (5-Fu) is still the most common chemotherapeutic drug used for the treatment of colon cancer. A better understanding of the mechanism of why cancers develop resistance to 5-Fu could improve its therapeutic effect. Sometimes, antioxidants are used simultaneously with 5-Fu treatment. However, a recent clinical trial showed no advantage or even a harmful effect of combining antioxidants with 5-Fu compared with administration of 5-Fu alone. The mechanism explaining this phenomenon is still poorly understood. In this study, we show that 5-Fu can induce reactive oxygen species-dependent Src activation in colon cancer cells. Mouse embryonic fibroblasts that are deficient in Src showed a clear resistance to 5-Fu, and knocking down Src protein expression in colon cancer cells also decreased 5-Fu-induced apoptosis. We found that Src could interact with and phosphorylate caspase-7 at multiple tyrosine sites. Functionally, the tyrosine phosphorylation of caspase-7 increases its activity, thereby enhancing cellular apoptosis. When using 5-Fu and antioxidants together, Src activation was blocked, resulting in decreased 5-Fu-induced apoptosis. Our results provide a novel explanation as to why 5-Fu is not effective in combination with some antioxidants in colon cancer patients, which is important for clinical chemotherapy.

Related Organizations
Keywords

Caspase 7, Contraindications, Proto-Oncogene Proteins pp60(c-src), Antineoplastic Agents, Apoptosis, Antioxidants, Cell Line, Tumor, Colonic Neoplasms, Humans, Original Article, Drug Interactions, Fluorouracil, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
Green
gold