Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Mutant identification and characterization of the laccase gene family in Arabidopsis

Authors: Xiaoning, Cai; Elizabeth J, Davis; Jenny, Ballif; Mingxiang, Liang; Emily, Bushman; Victor, Haroldsen; Javad, Torabinejad; +1 Authors

Mutant identification and characterization of the laccase gene family in Arabidopsis

Abstract

Laccases, EC 1.10.3.2 or p-diphenol:dioxygen oxidoreductases, are multi-copper containing glycoproteins. Despite many years of research, genetic evidence for the roles of laccases in plants is mostly lacking. In this study, a reverse genetics approach was taken to identify T-DNA insertional mutants (the SALK collection) available for genes in the Arabidopsis laccase family. Twenty true null mutants were confirmed for 12 laccase genes of the 17 total laccase genes (AtLAC1 to AtLAC17) in the family. By examining the mutants identified, it was found that four mutants, representing mutations in three laccase genes, showed altered phenotypes. Mutants for AtLAC2, lac2, showed compromised root elongation under PEG-induced dehydration conditions; lac8 flowered earlier than wild-type plants, and lac15 showed an altered seed colour. The diverse phenotypes suggest that laccases perform different functions in plants and are not as genetically redundant as previously thought. These mutants will prove to be valuable resources for understanding laccase functions in vivo.

Related Organizations
Keywords

DNA, Bacterial, Arabidopsis Proteins, Laccase, Arabidopsis, Water, Sodium Chloride, Plant Roots, Polyethylene Glycols, Mutagenesis, Insertional, Phenotype, Multigene Family, Mutation, Seeds, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
173
Top 1%
Top 10%
Top 10%
bronze